aboutsummaryrefslogtreecommitdiffstats
path: root/bsie/extractor/text/metrics.py
blob: ddb943f4ba8482bd3fe2c5e87262900ee0a6f945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

# standard imports
from collections import Counter
import math
import typing

# bsie imports
from bsie.extractor import base
from bsie.matcher import nodes
from bsie.utils import bsfs, ns

# exports
__all__: typing.Sequence[str] = (
    'TextMetrics',
    )


## code ##

log2 = lambda x: math.log(x) / math.log(2)

class TextMetrics(base.Extractor):
    """Extract text metrics (character, word, and line counts) from a document."""

    CONTENT_READER = 'bsie.reader.document.Document'

    _callmap: typing.Dict[bsfs.schema.Predicate, typing.Callable[[str], typing.Any]]

    def __init__(self):
        super().__init__(bsfs.schema.from_string(base.SCHEMA_PREAMBLE + '''
            bse:num_characters rdfs:subClassOf bsfs:Predicate ;
                rdfs:domain bsn:Entity ;
                rdfs:range xsd:integer ;
                bsfs:unique "true"^^xsd:boolean .

            bse:num_paragraphs rdfs:subClassOf bsfs:Predicate ;
                rdfs:domain bsn:Entity ;
                rdfs:range xsd:integer ;
                bsfs:unique "true"^^xsd:boolean .

            bse:num_words rdfs:subClassOf bsfs:Predicate ;
                rdfs:domain bsn:Entity ;
                rdfs:range xsd:integer ;
                bsfs:unique "true"^^xsd:boolean .

            bse:vocabulary_size rdfs:subClassOf bsfs:Predicate ;
                rdfs:domain bsn:Entity ;
                rdfs:range xsd:integer ;
                bsfs:unique "true"^^xsd:boolean .

            bse:vocabulary_entropy rdfs:subClassOf bsfs:Predicate ;
                rdfs:domain bsn:Entity ;
                rdfs:range xsd:float ;
                bsfs:unique "true"^^xsd:boolean .
            '''))
        self._callmap = {
            self.schema.predicate(ns.bse.num_characters):       self.__num_characters,
            self.schema.predicate(ns.bse.num_paragraphs):       self.__num_paragraphs,
            self.schema.predicate(ns.bse.num_words):            self.__num_words,
            self.schema.predicate(ns.bse.vocabulary_size):      self.__vocab_size,
            self.schema.predicate(ns.bse.vocabulary_entropy):   self.__entropy,
            }

    def extract(
            self,
            subject: nodes.Entity,
            content: typing.Sequence[str],
            principals: typing.Iterable[bsfs.schema.Predicate],
            ) -> typing.Iterator[typing.Tuple[nodes.Entity, bsfs.schema.Predicate, typing.Any]]:
        for pred in principals:
            # find callback
            clbk = self._callmap.get(pred)
            if clbk is None:
                continue
            # produce triple
            yield subject, pred, clbk(content)

    def __num_words(self, text: typing.Sequence[str]) -> int:
        return sum([len(paragraph.split()) for paragraph in text])

    def __num_characters(self, text: typing.Sequence[str]) -> int:
        return sum([len(paragraph) for paragraph in text])

    def __num_paragraphs(self, text: typing.Sequence[str]) -> int:
        return len(text)

    def __vocab_size(self, text: typing.Sequence[str]) -> int:
        return sum({len(paragraph.split()) for paragraph in text})

    def __entropy(self, text: typing.Sequence[str]) -> float:
        words = [word for paragraph in text for word in paragraph.split() ]
        word_histogram = Counter(words)
        num_words = len(words)
        return -sum(
            word_prob / num_words * log2(word_prob / num_words)
            for word_prob
            in word_histogram.values()
            )

## EOF ##