1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
# imports
import typing
# bsfs imports
from bsfs.namespace import ns
from bsfs.utils import errors, URI, typename
# exports
__all__: typing.Sequence[str] = (
'Literal',
'Node',
'Predicate',
'Feature',
)
## code ##
class _Type():
"""A class is defined via its uri.
Classes define a partial order.
The order operators indicate whether some class is a
superclass (greater-than) or a subclass (less-than) of another.
Comparisons are only supported within the same type.
For example, consider the class hierarchy below:
Vehicle
Two-wheel
Bike
Bicycle
>>> vehicle = _Type('Vehicle')
>>> twowheel = _Type('Two-wheel', vehicle)
>>> bike = _Type('Bike', twowheel)
>>> bicycle = _Type('Bicycle', twowheel)
Two-wheel is equivalent to itself
>>> twowheel == vehicle
False
>>> twowheel == twowheel
True
>>> twowheel == bicycle
False
Two-wheel is a true subclass of Vehicle
>>> twowheel < vehicle
True
>>> twowheel < twowheel
False
>>> twowheel < bicycle
False
Two-wheel is a subclass of itself and Vehicle
>>> twowheel <= vehicle
True
>>> twowheel <= twowheel
True
>>> twowheel <= bicycle
False
Two-wheel is a true superclass of Bicycle
>>> twowheel > vehicle
False
>>> twowheel > twowheel
False
>>> twowheel > bicycle
True
Two-wheel is a superclass of itself and Bicycle
>>> twowheel >= vehicle
False
>>> twowheel >= twowheel
True
>>> twowheel >= bicycle
True
Analoguous to sets, this is not a total order:
>>> bike < bicycle
False
>>> bike > bicycle
False
>>> bike == bicycle
False
"""
# class uri.
uri: URI
# parent's class uris.
parent: typing.Optional['_Type'] # TODO: for python >=3.11: use typing.Self
def __init__(
self,
uri: URI,
parent: typing.Optional['_Type'] = None,
**annotations: typing.Any,
):
self.uri = URI(uri)
self.parent = parent
self.annotations = annotations
def parents(self) -> typing.Generator['_Type', None, None]:
"""Generate a list of parent nodes."""
curr = self.parent
while curr is not None:
yield curr
curr = curr.parent
def child(
self,
uri: URI,
**kwargs,
):
"""Return a child of the current class."""
return type(self)(
uri=uri,
parent=self,
**kwargs
)
def __str__(self) -> str:
return f'{typename(self)}({self.uri})'
def __repr__(self) -> str:
return f'{typename(self)}({self.uri}, {repr(self.parent)})'
def __hash__(self) -> int:
return hash((type(self), self.uri, self.parent))
# NOTE: For equality and order functions (lt, gt, le, ge) we explicitly want type equality!
# Consider the statements below, with class Vehicle(_Type) and class TwoWheel(Vehicle):
# * Vehicle('foo', None) == TwoWheel('foo', None): Instances of different types cannot be equivalent.
# * Vehicle('foo', None) <= TwoWheel('foo', None): Cannot compare the different types Vehicles and TwoWheel.
def __eq__(self, other: typing.Any) -> bool:
"""Return True iff *self* is equivalent to *other*."""
# pylint: disable=unidiomatic-typecheck
return type(other) is type(self) \
and self.uri == other.uri \
and self.parent == other.parent
def __lt__(self, other: typing.Any) -> bool:
"""Return True iff *self* is a true subclass of *other*."""
if not isinstance(other, _Type):
return NotImplemented
if not isinstance(other, type(self)): # FIXME: necessary?
return False
if self.uri == other.uri: # equivalence
return False
if self in other.parents(): # superclass
return False
if other in self.parents(): # subclass
return True
# not related
return False
def __le__(self, other: typing.Any) -> bool:
"""Return True iff *self* is equivalent or a subclass of *other*."""
if not isinstance(other, _Type):
return NotImplemented
if not isinstance(other, type(self)): # FIXME: necessary?
return False
if self.uri == other.uri: # equivalence
return True
if self in other.parents(): # superclass
return False
if other in self.parents(): # subclass
return True
# not related
return False
def __gt__(self, other: typing.Any) -> bool:
"""Return True iff *self* is a true superclass of *other*."""
if not isinstance(other, _Type):
return NotImplemented
if not isinstance(other, type(self)): # FIXME: necessary?
return False
if self.uri == other.uri: # equivalence
return False
if self in other.parents(): # superclass
return True
if other in self.parents(): # subclass
return False
# not related
return False
def __ge__(self, other: typing.Any) -> bool:
"""Return True iff *self* is eqiuvalent or a superclass of *other*."""
if not isinstance(other, _Type):
return NotImplemented
if not isinstance(other, type(self)): # FIXME: necessary?
return False
if self.uri == other.uri: # equivalence
return True
if self in other.parents(): # superclass
return True
if other in self.parents(): # subclass
return False
# not related
return False
class Vertex(_Type):
"""Graph vertex types. Can be a Node or a Literal."""
parent: typing.Optional['Vertex']
def __init__(self, uri: URI, parent: typing.Optional['Vertex'], **kwargs):
super().__init__(uri, parent, **kwargs)
class Node(Vertex):
"""Node type."""
parent: typing.Optional['Node']
def __init__(self, uri: URI, parent: typing.Optional['Node'], **kwargs):
super().__init__(uri, parent, **kwargs)
class Literal(Vertex):
"""Literal type."""
parent: typing.Optional['Literal']
def __init__(self, uri: URI, parent: typing.Optional['Literal'], **kwargs):
super().__init__(uri, parent, **kwargs)
class Feature(Literal):
"""Feature type."""
# Number of feature vector dimensions.
dimension: int
# Feature vector datatype.
dtype: URI
# Distance measure to compare feature vectors.
distance: URI
def __init__(
self,
# Type members
uri: URI,
parent: typing.Optional[Literal],
# Feature members
dimension: int,
dtype: URI,
distance: URI,
**kwargs,
):
super().__init__(uri, parent, **kwargs)
self.dimension = int(dimension)
self.dtype = URI(dtype)
self.distance = URI(distance)
def __hash__(self) -> int:
return hash((super().__hash__(), self.dimension, self.dtype, self.distance))
def __eq__(self, other: typing.Any) -> bool:
return super().__eq__(other) \
and self.dimension == other.dimension \
and self.dtype == other.dtype \
and self.distance == other.distance
def child(
self,
uri: URI,
dimension: typing.Optional[int] = None,
dtype: typing.Optional[URI] = None,
distance: typing.Optional[URI] = None,
**kwargs,
):
"""Return a child of the current class."""
if dimension is None:
dimension = self.dimension
if dtype is None:
dtype = self.dtype
if distance is None:
distance = self.distance
return super().child(
uri=uri,
dimension=dimension,
dtype=dtype,
distance=distance,
**kwargs,
)
class Predicate(_Type):
"""Predicate base type."""
# source type.
domain: Node
# destination type.
range: Vertex
# maximum cardinality of type.
unique: bool
def __init__(
self,
# Type members
uri: URI,
parent: typing.Optional['Predicate'],
# Predicate members
domain: Node,
range: Vertex, # pylint: disable=redefined-builtin
unique: bool,
**kwargs,
):
# check arguments
if not isinstance(domain, Node):
raise TypeError(domain)
if range != ROOT_VERTEX and not isinstance(range, (Node, Literal)):
raise TypeError(range)
# initialize
super().__init__(uri, parent, **kwargs)
self.domain = domain
self.range = range
self.unique = bool(unique)
def __hash__(self) -> int:
return hash((super().__hash__(), self.domain, self.unique, self.range))
def __eq__(self, other: typing.Any) -> bool:
return super().__eq__(other) \
and self.domain == other.domain \
and self.range == other.range \
and self.unique == other.unique
def child(
self,
uri: URI,
domain: typing.Optional[Node] = None,
range: typing.Optional[Vertex] = None, # pylint: disable=redefined-builtin
unique: typing.Optional[bool] = None,
**kwargs,
):
"""Return a child of the current class."""
if domain is None:
domain = self.domain
if not domain <= self.domain:
raise errors.ConsistencyError(f'{domain} must be a subclass of {self.domain}')
if range is None:
range = self.range
# NOTE: The root predicate has a Vertex as range, which is neither a parent of the root
# Node nor Literal. Hence, that test is skipped since a child should be allowed to
# specialize from Vertex to anything.
if self.range != ROOT_VERTEX and not range <= self.range:
raise errors.ConsistencyError(f'{range} must be a subclass of {self.range}')
if unique is None:
unique = self.unique
return super().child(
uri=uri,
domain=domain,
range=range,
unique=unique,
**kwargs
)
# essential vertices
ROOT_VERTEX = Vertex(
uri=ns.bsfs.Vertex,
parent=None,
)
ROOT_NODE = Node(
uri=ns.bsfs.Node,
parent=None,
)
ROOT_LITERAL = Literal(
uri=ns.bsfs.Literal,
parent=None,
)
ROOT_BLOB = Literal(
uri=ns.bsl.BinaryBlob,
parent=ROOT_LITERAL,
)
ROOT_NUMBER = Literal(
uri=ns.bsl.Number,
parent=ROOT_LITERAL,
)
ROOT_TIME = Literal(
uri=ns.bsl.Time,
parent=ROOT_LITERAL,
)
ROOT_ARRAY = Literal(
uri=ns.bsl.Array,
parent=ROOT_LITERAL,
)
ROOT_FEATURE = Feature(
uri=ns.bsl.Array.Feature,
parent=ROOT_ARRAY,
dimension=1,
dtype=ns.bsfs.dtype().f16,
distance=ns.bsd.euclidean,
)
# essential predicates
ROOT_PREDICATE = Predicate(
uri=ns.bsfs.Predicate,
parent=None,
domain=ROOT_NODE,
range=ROOT_VERTEX,
unique=False,
)
## EOF ##
|