aboutsummaryrefslogtreecommitdiffstats
path: root/bsie/reader/face.py
blob: e43b93f0b1bffabfc10163f22fbbcf03dee7dc9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

# standard imports
import operator
import typing

# external imports
from facenet_pytorch import MTCNN, InceptionResnetV1
import PIL.Image
import torch

# bsie imports
from bsie.utils import bsfs, errors, ns

# inner-module imports
from . import base

# exports
__all__: typing.Sequence[str] = (
    'FaceExtract',
    )


## code ##

class FaceExtract(base.Reader):
    """Extract faces and their feature vector from an image file."""

    # Face patch size.
    _target_size: int

    # Lower bound on the detected face's probability.
    _min_face_prob: float

    # Face detector network.
    _detector: MTCNN

    # Face feature extractor network.
    _embedder: InceptionResnetV1

    def __init__(
            self,
            target_size: int = 1000,
            min_face_size: int = 40,
            min_face_prob: float = 0.992845,
            cuda_device: str = 'cuda:0',
            ext_face_size: int = 160,
            thresholds: typing.Tuple[float, float, float] = [0.5, 0.6, 0.6],
            factor: float = 0.709,
            ):
        # initialize
        self._device = torch.device(cuda_device if torch.cuda.is_available() else 'cpu')
        # initialize the face detection network
        self._target_size = target_size
        self._min_face_prob = min_face_prob
        self._carghash = hash((min_face_size, ext_face_size, tuple(thresholds), factor))
        self._detector = MTCNN(
            min_face_size=min_face_size,
            image_size=ext_face_size,
            thresholds=thresholds,
            factor=factor,
            device=self._device,
            keep_all=True,
            ).to(self._device)
        # initialize the face embedding netwrok
        self._embedder = InceptionResnetV1('vggface2').to(self._device).eval()

    def __repr__(self) -> str:
        return f'{bsfs.typename(self)}({self._min_face_prob})'

    def __eq__(self, other: typing.Any) -> bool:
        return super().__eq__(other) \
           and self._target_size == other._target_size \
           and self._min_face_prob == other._min_face_prob \
           and self._carghash == other._carghash

    def __hash__(self) -> int:
        return hash((super().__hash__(), self._target_size, self._min_face_prob, self._carghash))

    @staticmethod
    def preprocess(
            img: PIL.Image.Image,
            target_size: int,
            rotate: typing.Union[bool, int] = True,
            ) -> typing.Tuple[PIL.Image.Image, typing.Callable[[typing.Tuple[float, float]], typing.Tuple[float, float]]]:
        """Preprocess an image. Return the image and a coordinate back-transformation function.
        1. Scale larger side to *target_size*
        2. Rotate by angle *rotate*, or auto-rotate if *rotate=None* (the default).
        """
        # FIXME: re-using reader.Image would cover more file formats!

        # >>> from PIL import ExifTags
        # >>> exif_ori = [k for k, tag in ExifTags.TAGS.items() if tag == 'Orientation']
        # >>> exif_ori = exif_ori[0]
        exif_ori = 274

        # scale image
        orig_size = img.size
        if img.size[0] > img.size[1]: # landscape
            img = img.resize((target_size, int(img.height / img.width * target_size)), reducing_gap=3)
        elif img.size[0] < img.size[1]: # portrait
            img = img.resize((int(img.width / img.height * target_size), target_size), reducing_gap=3)
        else: # square
            img = img.resize((
                int(img.width / img.height * target_size),
                int(img.width / img.height * target_size),
                ), reducing_gap=3)

        # get scale factors
        sX = orig_size[0] / img.width
        sY = orig_size[1] / img.height

        # rotate image (if need be)
        denorm = lambda xy: (sX*xy[0], sY*xy[1])
        if rotate is not None:
            # auto-rotate according to EXIF information
            img_ori = img.getexif().get(exif_ori, None)
            if img_ori == 3 or rotate == 180:
                img = img.rotate(180, expand=True)
                denorm = lambda xy: (orig_size[0] - sX*xy[0], orig_size[1] - sY*xy[1])
            elif img_ori == 6 or rotate == 270:
                img = img.rotate(270, expand=True)
                denorm = lambda xy: (orig_size[0] - sX*xy[1], sY*xy[0])
            elif img_ori == 8 or rotate == 90:
                img = img.rotate(90, expand=True)
                denorm = lambda xy: (sX*xy[1], orig_size[1] - sY*xy[0])

        # return image and denormalization function
        return img, denorm

    def __call__(self, path: str) -> typing.Sequence[dict]:
        try:
            # open the image
            img = PIL.Image.open(path)
            # rotate and scale the image
            img, denorm = self.preprocess(img, self._target_size)

            # detect faces
            boxes, probs = self._detector.detect(img)
            if boxes is None: # no faces detected
                return []
            # ignore boxes with probability below threshold
            boxes = [box for box, p in zip(boxes, probs) if p >= self._min_face_prob]
            if len(boxes) == 0: # no faces detected
                return []
            # compute face embeddings
            faces_img = self._detector.extract(img, boxes, None).to(self._device)
            embeds = self._embedder(faces_img)

            faces = []
            for bbox, face, emb in zip(boxes, faces_img, embeds):
                # face hash
                ucid = bsfs.uuid.UCID.from_bytes(bytes(face.detach().cpu().numpy()))
                # position / size
                x0, y0 = denorm(bbox[:2])
                x1, y1 = denorm(bbox[2:])
                x, y = min(x0, x1), min(y0, y1)
                width, height = max(x0, x1) - x, max(y0, y1) - y
                # assembled
                faces.append(dict(
                    ucid=ucid, # str
                    x=x, # float
                    y=y, # float
                    width=width, # float
                    height=height, # float
                    embedding=emb, # np.array
                    ))

            return faces

        except PIL.UnidentifiedImageError as err: # format not supported by PIL
            raise errors.UnsupportedFileFormatError(path) from err
        except IOError as err: # file not found and file open errors
            raise errors.ReaderError(path) from err
        except RuntimeError as err: # pytorch errors
            raise errors.ReaderError(path) from err
        except ValueError as err: # negative seek value
            raise errors.ReaderError(path) from err

## EOF ##